

Gültig ab Schuljahr 2021/22

Lehrpläne MAR-Klassen Kantonsschule Sursee

Die Lehrpläne basieren auf dem Rahmenlehrplan für die Maturitätsschulen der EDK sowie dem Anhang zum Rahmenlehrplan für die Maturitätsschulen: Basale fachliche Kompetenzen für allgemeine Studierfähigkeit in Erstsprache und Mathematik vom 17. März 2016. Link zum Anhang

SCHWERPUNKTFACH PHYSIK UND ANWENDUNGEN DER MATHEMATIK

1. STUNDENDOTATION

	MAR 1	MAR 2	MAR 3	MAR 4
1. Semester		2*/2	2*/2	3*/3
2. Semester		2*/2	2*/2	3*/3

^{*} Physik / Anwendungen der Mathematik

2. BILDUNGSZIELE

- Das Schwerpunktfach Physik und Anwendungen der Mathematik stützt sich auf die in den Grundlagenfächern Physik und Mathematik erworbenen Kenntnisse. Die im GF gewonnenen physikalischen und mathematischen Fertigkeiten werden beträchtlich erweitert und vertieft.
- Der Unterricht entwickelt die F\u00e4higkeiten, vielf\u00e4ltige Probleme aus Alltag, Technik und anderen Naturwissenschaften zu erkennen und sie einer mathematischen und physikalischen Bearbeitung zu unterziehen. Dazu werden Modelle entworfen, experimentell gepr\u00fcft, weiterentwickelt und bez\u00fcglich der abgebildeten Wirklichkeit beurteilt.
- Im f\u00e4cher\u00fcbergreifenden Unterricht soll die enge Verwandtschaft von Physik und Mathematik sichtbar gemacht werden. Das Wechselspiel zwischen empirischem und analytischem Vorgehen wird im Unterricht besonders stark ausgepr\u00e4gt.
- Genaues analytisches Denken, gepaart mit pragmatischem, zielgerichtetem Vorgehen, sowie ausdauernde präzise Arbeit werden angestrebt und gefördert. Die Ergebnisse dieser Arbeit werden kritisch beurteilt.
- Der Unterricht baut allgemeine Grundlagen und Haltungen auf, welche für anschliessende Ausbildungslehrgänge in Naturwissenschaften und Technik, insbesondere auch der Ingenieurdisziplinen, wichtig sind.
- Die vorhandenen Begabungen der Schülerinnen und Schüler werden gefördert und weiterentwickelt.
- Das Schwerpunktfach Physik und Anwendungen der Mathematik liefert die Grundlagen für das Verständnis von Wissenschaft und Technik. Es hilft wesentlich mit, sich in unserer komplexen und hochtechnisierten Welt zurechtzufinden.

3. RICHTZIELE

GRUNDKENNTNISSE

Maturandinnen und Maturanden

- kennen die physikalischen Grunderscheinungen und die dahinterstehenden Naturgesetze
- verstehen die Zusammenhänge zwischen Physik und Mathematik und sind fähig, erworbenes mathematisches Wissen in Beschreibung von dynamischen Prozesse einzusetzen
- kennen Ergebnisse der physikalischen und mathematischen Forschung und ihren Einfluss auf die Veränderung und Erweiterung des Weltbildes
- haben in ausgewählten Bereichen Einblicke in das Zusammenwirken moderner mathematischer und physikalischer Theorien
- verstehen fundamentale Begriffe der Physik und deren Bedeutung für die Umwelt und Technik
- sind sich der Wichtigkeit der Physik und Mathematik in der Entwicklung der Technik und Technologie bewusst
- sind f\u00e4hig, die Techniken der beiden Fachrichtungen in offenen Problemstellungen einzusetzen

GRUNDFERTIGKEITEN

Maturandinnen und Maturanden sind fähig

- zu beurteilen, welche Phänomene einer mathematisch-physikalischen Betrachtungsweise zugänglich sind
- zu unterscheiden zwischen Fakten und Hypothesen, zwischen Beobachtung und Interpretation und zwischen Voraussetzung und Folgerung
- ihr Vorstellungsvermögen für Objekte des geometrischen Raumes weiter zu entwickeln
- mit Experimentiermaterial, technischen Geräten und Instrumenten umzugehen
- geeignete Sachverhalte durch selbstentwickelte Modelle zu beschreiben und die Resultate mit der Wirklichkeit zu konfrontieren
- Messgenauigkeit experimenteller Methoden abzuschätzen
- mit diversen Hilfsmitteln wie Mathematiksoftware und algorithmischen Methoden zu arbeiten
- grössere Experimente durchzuführen, auszuwerten und interpretieren
- Problemstellungen klar zu formulieren, zu kommentieren und übersichtlich darzustellen
- Aufgabenstellungen, Lösungsansätze, gewählte Methoden wie auch deren Ergebnisse korrekt und ansprechend zu präsentieren

GRUNDHALTUNGEN

Maturandinnen und Maturanden

- sind bereit, ihre mathematischen, naturwissenschaftlichen und technischen Kenntnisse an ausgewählten Themen einzusetzen
- sind f\u00e4hig, an mathematisch-physikalischen Problemstellungen genau, ausdauernd und systematisch zu arbeiten
- sind bereit, sich in interdisziplinäre Teams einzufügen und darin effizient zu arbeiten
- sind interessiert, durch mathematische Anwendungen andere Fachbereiche zu unterstützen und umgekehrt auch deren fachliche Beiträge und Anregungen aufzugreifen

4. GROBZIELE

GROBZIELE 4. KLASSE	LERNINHALTE	QUERVERWEISE
Physik		
Elemente der Experimentalphysik in der Praxis lernen und anwenden	 Durchführung und Auswertung der Experimente mit mehreren physikalischen Grössen (z.B. Projekt: Messung der Schallgeschwindigkeit, Fallbeschleunigung auf Erdoberfläche mit Pendel,) 	MA: Elemente der Statistik aus pragmatischer Sichtweise
Kenntnisse der Mechanik vertiefen	 Zusammengesetzte Bewegungen, verschiedene Bezugssysteme, Superpositionsprinzip 	SP: Würfe, Turmspringen, Schanzensprünge
Präzisionsexperimente zum freien Fall, zum Impuls und zur Energieerhaltung durchführen	 Projekte: Studium und Beseitigung störender Effekte (z.B. Reibung), systematische Arbeit an der Entwicklung des Experimentes (Präzisionsniveau 10⁻³) 	IN: Diagramme der Experimentalgrössen, Tabellenkalkulationen, Programmiersprachen
Newtonsche Gesetze anwenden	 Stossprobleme Gleichgewichtsbedingungen 	CH: Streuung: Atome, Kerne AS: Entstehung der Galaxie
	 Grundlagen der Hydro- und Aerodynamik 	
Strahlenoptik und Grundlagen der Astronomie ausarbeiten	 Schattenprobleme, Lichtbrechung und Fermatsches Prinzip, Linsen, Teleskope 	AS: Finsternisse, bedeckungsveränderliche Sternsysteme MA: Minimumprobleme z.B. mit
	o Lichtintensitätsmessungen	GeoGebra
Aktuelle wissenschaftliche Berichte aus physikalischer Sicht	 Beiträge aus Zeitungen, Internetseiten 	BI, CH: Physikalische Methoden in den Naturwissenschaften
studieren beurteilen	o Fachzeitschriften	

- verbindlich
- o fakultativ

ANWENDUNGEN DER MATHEMATIK		
Raumvorstellungen erwerben	konstruktive Raumgeometrie: Schrägbilder, Parallel- und ev. Zentralprojektion	IN: Geometrie-Programm
Räumliche Probleme analysieren und rechnerisch bewältigen	Vektorgeometrie: Vektorprodukt, Spatprodukt und Anwendungen	PS: Arbeit, Potential Drehmoment, Drehimpuls
Eine Optimierungsmethode der Wirtschaft kennen lernen und anwenden	Lineare Optimierung	
Trigonometrische Kenntnisse vertiefen und in verschiedenen Gebieten anwenden	Trigonometrie: Sinussatz und Cosinussatz, Additionstheoreme	GG: Vermessungswesen PS: Astronomie
sich im Rahmen von Projekten mit Anw. der Mathematik auseinandersetzen	Anwendungen der Mathematik	
Physikalische Versuche planen, durchführen und auswerten	Schülerexperimente	

- verbindlich
- o fakultativ

GROBZIELE 5. KLASSE	LERNINHALTE	QUERVERWEISE
Physik		
Prinzipien und Anwendungen der Drehbewegungen kennen lernen	 Trägheitsmomente, Drehimpulserhaltung, Kreisel, Präzession, Drehachsen von Planeten Spin der Atome und Elementarteilchen 	MA: Vektorprodukte CH, BI: MRI-Geräte in der Grundlagenforschung und medizinischen Diagnostik
Mechanik als Vorbereitung für Gravitation und Elektrizitätslehre vertiefen	 Analytische Beschreibung der Kreisbewegung, Ellipsen, Hyperbeln, Zykloiden Schrauben, Spiralen 	MA: Parameterdarstellungen von Kurven, angewandte Trigonometrie
Elemente der Gravitation vertieft betrachten	 Bestimmung astronomischer Grössen, Himmelsmechanik, Gravitationsfeld, Potential Zentralfeld 	MA: Analytische Geometrie, Kleinwinkelnäherung MEDIEN: Raumfahrt, Kosmologie
Klassische Mechanik zusammenfassen	 Klassische Erhaltungssätze Analogien in der Physik: Gravitation und Elektrostatik, Vektorfelder Trägheitskräfte 	CH: Bewegungen im Mikrokosmos: Elektronen, Protonen, Neutronen, Quarks GG: Metrologie (Passatwinde)
Relativitätstheorie als Beispiel für Erweiterung der physikalischen Theorien verstehen	Lichtgeschwindigkeit, Lorentztransformation, Energie-Masse-Äquivalenz, Gedankenexperimente, Paradoxe Erhaltungssätze: Impuls-	MA: Lineartransformationen, Matrizenrechnung, Nichtkommutativität, Taylor-Entwicklungen PH: Paradigmenwechsel TECHNIK: Telekommunikation,
Praktische Astronomie: Beobachtungen der Naturprozesse geniessen	Energie-Massenerhaltung, Schlüsselexperimente Projektwoche Astronomische Beobachtungen: kosmische Objekte, Bewegungen, Sternbilder, Planeten, Jupitersystem, Doppelsterne, Kugelsternhaufen, Nebel und Galaxien, spezielle Ereignisse: Finsternisse, Bedeckungen	GPS, Kernspaltung, Kernfusion MEDIEN: Neue Entdeckungen, astronomische Ereignisse MA: Keplersches Problem mit Schwerpunktskorrekturen
Harmonische Bewegung und Wellenlehre verstehen Experimente durchführen	 Pendelbewegung und andere schwingende Systeme, Superpositionsprinzip, Resonanz, nicht harmonische Korrekturen 	GG: Erdbeben und Tsunamis TECHNIK: Interferenzmethoden
Wellenoptik und Akustik verstehen und erfahren	 Prinzip von Huygens, stehende Wellen, Lichtbeugung, Interferenz, Schwebungen, Dopplereffekt klassisch und relativistisch Fouriersynthese und Analyse 	MU: Musikskalen, Musikinstrumente, Klangfarben ASTRONOMIE: Messen von Wellenlänge, Masseabschätzung von Exoplaneten

- verbindlich
- o fakultativ

ANWENDUNGEN DER MATHEMATIK		
Kreis und Kugel	Gleichungen, Anwendungen	
Kegelschnitte geometrisch und algebraisch erfassen und ihre Bedeutung in Anwendungen erkennen	Kegelschnitte: geometrische Eigenschaften, Gleichungen	PS: Himmelsmechanik, Akustik, Optik, Technik
Mathematische Transformationen kennenlernen	affine Abbildungen, Matrizen	
Computergrafik, Fraktale	Iterationen, dynamische Prozesse (Chaos)	IN: Grafik
Mathematiksoftware einsetzen, Algorithmen entwickeln und implementieren	Mathematikprogramme, numerische Methoden, Programmieren	
sich im Rahmen von Projekten mit Anw. der Mathematik auseinandersetzen	Anwendungen der Mathematik	

- verbindlich
- o fakultativ

GROBZIELE 6. KLASSE	LERNINHALTE	QUERVERWEISE
Physik		
Verständnis der Wärmelehre vertiefen Fundamentale Begrenzungen für technische Anwendungen verstehen	Gasgesetze, Adiabate, mikroskopische Bedeutung der Temperatur, Äquipartition der Energie, Maxwellsche Geschwindigkeitsverteilung, molare Wärmekapazität und molekulare Freiheitsgrade Carnot-Zyklus, Wärmekraft-	MA: Funktionen mit mehreren Variablen, Volumenarbeit als Integral UMWELT: Zusammensetzung der Erdatmosphäre, Verfügbarkeit der Energie PH: Wärmetod des Universums
	maschinen, statistische Interpretation der Entropie	
Theoretische Kenntnisse der Elektrizität und des Magnetismus vertiefen	Gausssches Gesetz vs. Coulomb/Newton, Ladungsverteilungen, Felder Maxwellsche Gleichungen	MA: Differentialgleichungen erster und zweiter Ordnung,
Vielfalt der technischen Anwendungen erkennen und verstehen	 Induktion Wechselströme, RLC- Schaltkreise, mechanische Analogien 	MA: Anfangsbedingungen, komplexe Zahlen, partielle Differentialgleichungen TECHNIK: Radio, Fernsehen, Mikroelektronik
Atome und Quanten: ein neues Bild der Natur kennen lernen Der Bedeutung der Atomphysik für andere Wissenschaften bewusst werden	 Photoeffekt, Plancksche Konstante, Quantisierung des Drehimpulses, Bohrsches Atommodell Schalen, Elekronenspin Schrödingergleichung, komplexe Atome 	CH: Aufbau der Periodentafel, Ionisationsenergien TECHNIK: Aufbau der Festkörper, Dünne Schichten PH: Dualismus, statistischer Determinismus ASTRONOMIE: Absorptionslinien und Eigenschaften von Sternen
Den Umgang mit den Naturkräften fördern sich der Chancen und Gefahren der technischen Anwendung physikalischer Erkenntnisse bewusst werden	 Radioaktivität Alpha, Beta, Gamma Strahlung, Streuung von Alphateilchen, Neutronen Wirkungsquerschnitt, Bindungsenergie, Kernspaltung und Kernfusion, Kettenreaktion 	BI: Strahlenschutz WR: Umgang mit Kernenergie, alternative Energiequellen GG: Treibhauseffekt, Klimaprobleme EN: Fachzeitschriften
Zusammenhänge von Elementarteilchenphysik und Kosmologie erkennen Verbindung zwischen Mikro- und Makrokosmos verstehen	 Elektron, Myon, Erhaltungssätze Quarkmodell: Aufbau der Protonen und Neutronen, fundamentale Fermionen, Teilchen-Antiteilchen Teilchenbeschleuniger, Urknallmodell 	BI: Medizin: Protonentheraphie, Positron-Elektron Tomographie TECHNIK: Supraleitung, Teilchendetektoren PH, GS, DE: Weltbilder und Weltansichten
Physikalische Versuche planen, durchführen und auswerten	 Schülerexperimente Numerische Arbeitsmethoden, Datenerfassung und - Verarbeitung kennenlernen 	

- verbindlich
- fakultativ

Anwendungen der Mathematik		
Die Bedeutung der Analysis in der Physik und anderen Wissenschaften erfahren	Differentialgleichungen mit Anwendungen	PS: Bewegungen
Methoden der deskriptiven und induktiven Statistik kennen lernen und anwenden	Stochastik: Hypothesen testen (hypergeometrische, geometrische VErteilung, Poisson- und Normalverteilung	
Die vielfältigen Eigenschaften der komplexen Abbildungen erfahren und erkennen, wie sie jene der affinen übersteigen	komplexe Funktionen, Fraktale	PS: Wechselstrom
sich im Rahmen von Projekten mit Anw. der Mathematik auseinandersetzen	Anwendungen der Mathematik	PH: Logik

- verbindlich
- o fakultativ

5. FACHRICHTLINIEN

ORGANISATORISCHES

- Physikalische Laborversuche in Kleingruppen (Halbklassen) im Umfang von 1 Jahreslektion
- Unterricht im Team soll bis zum Umfang von 2 Jahreslektionen ermöglicht werden

6. FÄCHERÜBERGREIFENDER UNTERRICHT

GROBZIELE 4. KLASSE	LERNINHALTE	Unterrichtsform/Zeitgefäss
Bei Texterfassung exakt arbeiten und Problemanalysen aus	MA: Vollständige Induktion, indirekte Beweise	Fachübergreifendes Arbeiten im Normalunterricht, ca. 12 Lekt.
verschiedenen Gebieten erstellen	DE: Textanalyse in Bezug auf konsistente Semantik	Schülervorträge, ca. 4 Lekt.
	PS: Artikel aus der Presse über Astronomie und Astrophysik	

GROBZIELE 5. KLASSE	LERNINHALTE	Unterrichtsform/Zeitgefäss
Die Bedeutung des Phänomens Zufall erfassen und die Gesetze	MA: Chaostheorie, Zufallsgeneratoren	Fachübergreifendes Arbeiten im Normalunterricht, ca. 8 Lekt.
der "Grossen Zahlen" in	PS: Atomare Zerfallsprozesse	Schülervorträge, ca. 4 Lekt.
verschiedenen Anwendungen kennen lernen	PH: Wissenschaftstheorie	
	WR: Versicherungs- und Börsengeschäfte	
	IN: Algorithmen zur Erzeugung von Pseudozufallszahlen	

GROBZIELE 6. KLASSE	LERNINHALTE	Unterrichtsform/Zeitgefäss
Dynamische Systeme kennen lernen und analysieren	MA: Differenzen- und Differentialgleichungen	Fachübergreifendes Arbeiten im Normalunterricht, ca. 8Lekt.
	PS: Elemente der Feldtheorie, Einführung in die Quantenphysik	Schülervorträge, ca. 4 Lekt.
	PH: Determinismus und Kausalität, Weltbilder und Weltansichten	
	BI/CH: Umwelt und Energie, globale Erwärmung	